SOLDER

REPORT

Wild Rose 2 Wind Power Project

Shadow Flicker Assessment

Submitted to:

Andrea Kausel

Capstone Infrastructure Corporation on behalf of Wild Rose 2 Wind LP 155 Wellington Street West, Suite 2930 Toronto, Ontario M5V 3H1

Submitted by:

Golder Associates Ltd.

2800, 700 - 2nd Street SW, Calgary, Alberta, T2P 2W2, Canada

+1 403 299 5600

21504723-100-160

December 21, 2022

Distribution List

- 1 electronic copy Wild Rose 2 Wind LP
- 1 electronic copy Golder Associates Ltd.

Table of Contents

1.0	INTRO	ODUCTION	3
2.0	PROJ	IECT DESCRIPTION	4
3.0	ASSE	SSMENT APPROACH	5
	3.1	Assessment Cases	5
	3.2	Receptors	6
	3.3	Assessment Criteria	9
	3.4	Modelling Methods	9
4.0	RESU	ILTS	.10
5.0	DISC	USSION	.13
6.0	CONC	CLUSION	.13
7.0	REFE	RENCES	.15

TABLES

Table 1: Location of Updated Project Wind Turbine Generators	4
Table 2: Shadow Flicker Receptors	6
Table 3: Statistical Sunshine Data Used to Model Assessment Case B	9
Table 4: Statistical Wind Direction Data Used to Model Assessment Case B	.10
Table 5: Shadow Flicker Modelling Results for the Updated Project	.11

FIGURES

Figure 1: Study Area	8
Figure 2: Project Shadow Flicker; Statistical Sunshine and Wind Direction	12

1.0 INTRODUCTION

Wild Rose 2 Wind LP (Wild Rose 2) own the approved by not yet constructed Wild Rose 2 Wind Power Project (the Project), which will be located in Cypress County, Alberta, approximately 30 km southeast of Medicine Hat. The Alberta Utilities Commission (AUC) approved the Project in April 2017 (AUC 2017), and approved requests to extend the Project development schedule in October 2019 (AUC 2019) and November 2020 (AUC 2020).

The version of the Project approved by the AUC (the Approved Project) consists of 60 Siemens SWT 3.2-113 wind turbine generators, each with a nominal power rating of 3.2 MW, a collector system, and an electrical substation.

Wild Rose 2 is now proposing changes to the Approved Project design (the Updated Project). The Updated Project will consist of 38 Siemens Gamesa SG 5.0-145 wind turbine generators, each with a nominal power rating of 5.2 MW, a collector system, and an electrical substation.

Power generating facilities in Alberta are regulated by the AUC through Rule 007 (AUC 2022). The current version of Rule 007 requires preparation of a shadow flicker assessment for the Project. According to Rule 007, the shadow flicker assessment must: "...predict the extent of shadow flicker at receptors [occupied dwellings] within 1.5 kilometres from the centre point of each turbine where the potential for shadow flicker is possible" (AUC 2022).

Wild Rose 2 has retained Golder Associates Ltd. (WSP Golder) to prepare a shadow flicker assessment for the Updated Project, in accordance with Rule 007. Note that applications for the Approved Project were filed and approved before the AUC required shadow flicker assessments for wind power facilities. As such, a shadow flicker assessment was not prepared for the Approved Project.

The results of WSP Golder's shadow flicker assessment for the Updated Project are presented in this report. This report is structured as follows:

- Section 1 provides a brief introduction.
- Section 2 presents a description of the wind turbine generators proposed for the Updated Project.
- Section 3 outlines the assessment approach, including a description of:
 - assessment cases
 - shadow flicker receptors
 - assessment criteria
 - shadow flicker modelling methods
- Section 4 provides results for each assessment case.
- Section 5 discusses the results of the shadow flicker assessment.
- Section 6 provides a brief conclusion.

2.0 PROJECT DESCRIPTION

The Updated Project will consist of 38 Siemens Gamesa SG 5.0-145 wind turbine generators, along with a collector system and substation. The Updated Project wind turbines will consist of three-blade rotors and tubular towers. The Updated Project wind turbine generators will have a hub height of 95.5 m and a rotor diameter of 145 m.

Table 1 presents the locations of the Updated Project wind turbine generators. A map showing the locations of Updated Project wind turbine generators is presented in Section 3.2 of this report (see Figure 1).

Turbine Identification Code	Description	Universal Transverse Mercator Coordinates (Zone 12)		
Code		Easting (m)	Northing (m)	
T01	Siemens Gamesa SG 5.0-145 wind turbine	527898	5519590	
T02	Siemens Gamesa SG 5.0-145 wind turbine	527999	5519088	
T03	Siemens Gamesa SG 5.0-145 wind turbine	528388	5518746	
T04	Siemens Gamesa SG 5.0-145 wind turbine	531181	5520834	
T05	Siemens Gamesa SG 5.0-145 wind turbine	531473	5520144	
T06	Siemens Gamesa SG 5.0-145 wind turbine	532100	5519290	
T07	Siemens Gamesa SG 5.0-145 wind turbine	532347	5518691	
T10	Siemens Gamesa SG 5.0-145 wind turbine	531124	5515547	
T11	Siemens Gamesa SG 5.0-145 wind turbine	531514	5515106	
T12	Siemens Gamesa SG 5.0-145 wind turbine	532098	5516799	
T13	Siemens Gamesa SG 5.0-145 wind turbine	532453	5516414	
T15	Siemens Gamesa SG 5.0-145 wind turbine	533515	5517273	
T16	Siemens Gamesa SG 5.0-145 wind turbine	533823	5516805	
T17	Siemens Gamesa SG 5.0-145 wind turbine	534395	5516406	
T18	Siemens Gamesa SG 5.0-145 wind turbine	534895	5516156	
T19	Siemens Gamesa SG 5.0-145 wind turbine	535509	5515879	
T20	Siemens Gamesa SG 5.0-145 wind turbine	534493	5517965	
T21	Siemens Gamesa SG 5.0-145 wind turbine	534912	5517550	
T22	Siemens Gamesa SG 5.0-145 wind turbine	535579	5517271	
T23	Siemens Gamesa SG 5.0-145 wind turbine	530509	5513883	
T24	Siemens Gamesa SG 5.0-145 wind turbine	536397	5515189	
T25	Siemens Gamesa SG 5.0-145 wind turbine	536467	5514687	
T26	Siemens Gamesa SG 5.0-145 wind turbine	536358	5513664	
T27	Siemens Gamesa SG 5.0-145 wind turbine	536613	5513254	
T28	Siemens Gamesa SG 5.0-145 wind turbine	537272	5513184	
T29	Siemens Gamesa SG 5.0-145 wind turbine	535550	5513017	
Т30	Siemens Gamesa SG 5.0-145 wind turbine	536196	5512434	
T31	Siemens Gamesa SG 5.0-145 wind turbine	537348	5512185	
T32	Siemens Gamesa SG 5.0-145 wind turbine	535462	5512399	
Т33	Siemens Gamesa SG 5.0-145 wind turbine	535408	5511832	

Table 1: Location of Updated Project Wind Turbine Generators

Turbine Identification	Description	Universal Transverse Mercator Coordinates (Zone 12)		
Code		Easting (m)	Northing (m)	
T34	Siemens Gamesa SG 5.0-145 wind turbine	530743	5513437	
T35	Siemens Gamesa SG 5.0-145 wind turbine	537076	5511170	
T36	Siemens Gamesa SG 5.0-145 wind turbine	537357	5510727	
T37	Siemens Gamesa SG 5.0-145 wind turbine	536874	5510003	
T38	Siemens Gamesa SG 5.0-145 wind turbine	537170	5509680	
A05	Siemens Gamesa SG 5.0-145 wind turbine	536428	5511942	
A07	Siemens Gamesa SG 5.0-145 wind turbine	533095	5517640	
A09	Siemens Gamesa SG 5.0-145 wind turbine	533671	5518360	

3.0 ASSESSMENT APPROACH

3.1 Assessment Cases

Shadow flicker occurs when the spinning rotor of a wind turbine generator is located between the sun and a receptor point (e.g., an occupied dwelling). As the turbine blades alternately block sunlight and allow sunlight to shine through, the shadow at the receptor point may be observed to flicker under certain environmental conditions. For shadow flicker to occur, the sun must be shining, the sun must be low enough in the sky that the shadow of the wind turbine generator falls across the receptor point, the wind turbine generator must be active (i.e., the rotor must be spinning), and the turbine rotor must be oriented such that the blades are not parallel to the line joining the sun and receptor point. The shadow flicker assessment for the Updated Project considered two assessment cases, representing two different sets of environmental conditions.

Assessment Case A assumes the sun is always shining during daylight hours (i.e., there are no cloudy periods), all Updated Project wind turbine generators are always active (i.e., rotors spinning), and all Updated Project wind turbine generators are always oriented with their rotors perpendicular to the line joining the sun and all receptor points. Assessment Case A is highly conservative (i.e., likely to overestimate potential shadow flicker effects) because the sun is not always shining, and Updated Project wind turbine generators are not always active. In addition, the orientation of the Updated Project wind turbine generators will change continuously based on wind direction, so turbine rotors are not always oriented perpendicular to the line joining the sun and receptor points.

Assessment Case B makes use of statistical weather data to reduce some of the conservatism inherent in Assessment Case A. In particular, Assessment Case B uses statistical weather data to estimate the probability of sunshine for each month of the year. In addition, Assessment Case B uses statistical weather data to estimate the probability of different wind directions, and hence turbine orientations. Even with the use of statistical weather data, Assessment Case B is still a conservative evaluation of potential shadow flicker effects because it assumes the Updated Project wind turbine generators are always active (i.e., turbine rotors are always spinning), which is not the case.

3.2 Receptors

Rule 007 requires that shadow flicker be predicted and assessed at receptors corresponding to occupied dwellings located within 1.5 km of the Updated Project wind turbine generators (AUC 2022). WSP Golder established a study area for the shadow flicker assessment as a 1.5 km buffer on the Updated Project wind turbine generators. All occupied dwellings within this study area were treated as shadow flicker receptors for the Updated Project.

Potential shadow flicker receptors were identified using publicly available satellite imagery, information presented in the noise impact assessment for the Approved Project (DNV-GL 2016), and information provided by Wild Rose 2. A total of 21 occupied dwellings were identified within the study area and treated as shadow flicker receptors for the Updated Project.

When assessing potential shadow flicker effects, each receptor was assumed to be sensitive to shadow flicker in any direction. In other words, each receptor was assumed to have windows facing in all directions. This approach is often called greenhouse mode modelling. Greenhouse mode modelling is conservative since receptors may not actually have windows facing in all directions. In addition, trees, outbuildings, and other local structures can screen shadow flicker effects. These local shadow flicker screens were not considered when modelling receptors, which adds further conservatism to the shadow flicker assessment.

Table 2 presents locations for the 21 receptors considered in the Updated Project shadow flicker assessment. For each receptor, Table 2 also identifies and provides the distance to the closest Updated Project wind turbine generator. Figure 1 presents a map showing the locations of the Updated Project wind turbine generators and the shadow flicker receptors.

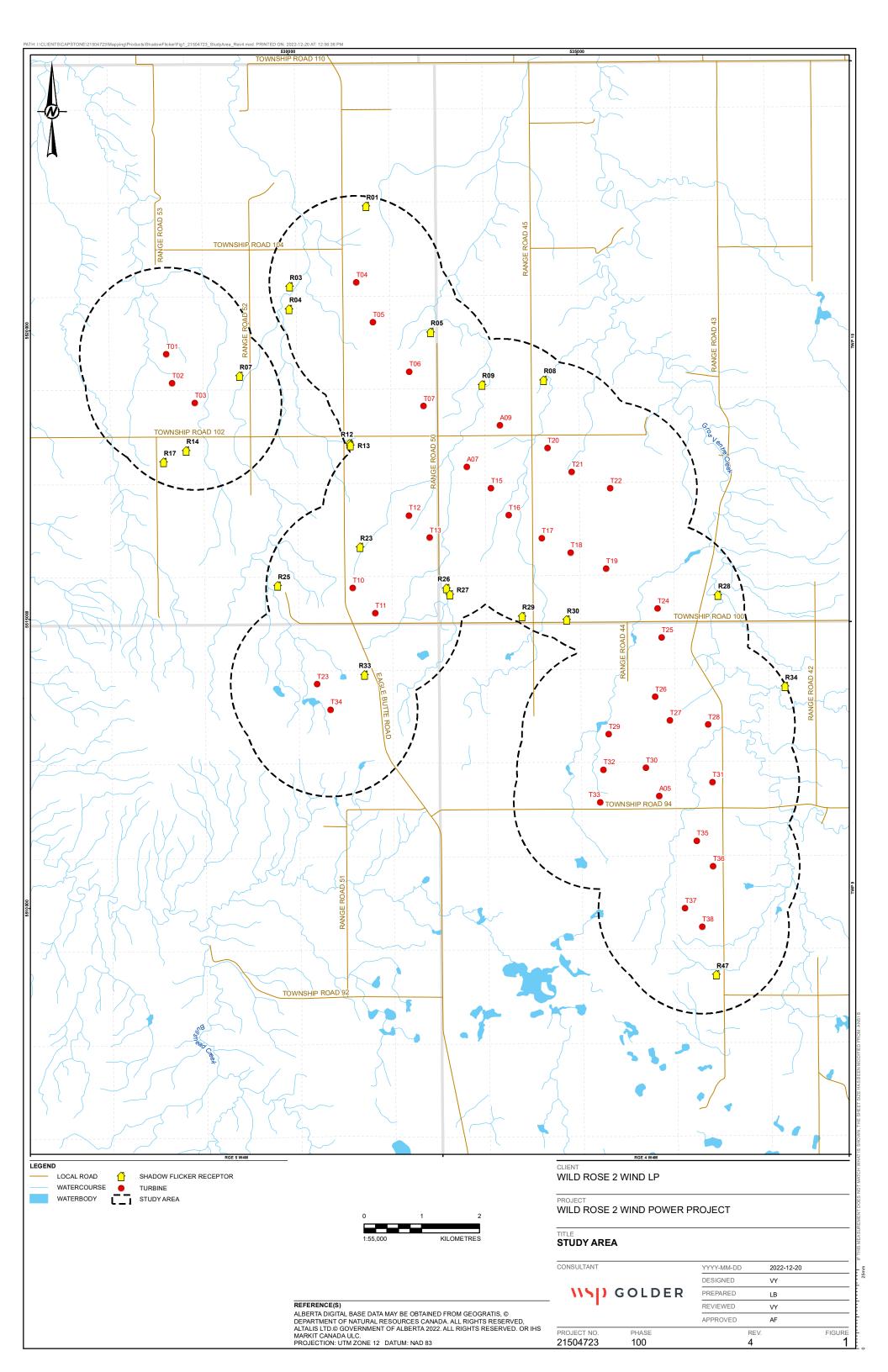

Receptor Identification	Receptor Description	Universal Transverse Mercator Coordinates (Zone 12)		Closest Updated Project	Distance to Closest Updated Project
Code ^(a)		Easting (m)	Northing (m)	Wind Turbine	Wind Turbine (m)
R01	occupied dwelling	531357	5522150	T04	1,328
R03	occupied dwelling	530032	5520760	T04	1,151
R04	occupied dwelling	530025	5520370	T04	1,246
R05	occupied dwelling	532473	5519970	T06	776
R07	occupied dwelling	529165	5519210	T03	905
R08	occupied dwelling	534431	5519140	A09	1,089
R09	occupied dwelling	533361	5519060	A09	766
R12	occupied dwelling	531072	5518040	T07	1,432
R13	occupied dwelling	531085	5518010	T07	1,434
R14	occupied dwelling	528246	5517920	T03	838
R17	occupied dwelling	527856	5517720	T03	1,156
R23	occupied dwelling	531251	5516250	T10	714
R25	occupied dwelling	529829	5515580	T10	1,295
R26	occupied dwelling	532750	5515539	T13	924
R27	occupied dwelling	532807	5515430	T13	1,046
R28	occupied dwelling	537446	5515420	T24	1,074

Table 2: Shadow Flicker Receptors

Table 2: Shadow Flicker Receptors

Receptor Identification	Receptor Description		sverse Mercator es (Zone 12)	Closest Updated Project Wind Turbine	Distance to Closest Updated Project Wind Turbine (m)
Code ^(a)		Easting (m)	Northing (m)		
R29	occupied dwelling	534057	5515050	T18	1,388
R30	occupied dwelling	534830	5514990	T19	1,119
R33	occupied dwelling	531330	5514040	T23	836
R34	occupied dwelling	538605	5513840	T28	1,486
R47	occupied dwelling	537417	5508850	T38	866

a) Receptor identification codes are consistent with the Approved Project noise impact assessment (DNV-GL 2016). Receptor identification codes in Table 2 are non-continuous because the Approved Project consists of a larger number of wind turbine generators spread across a larger spatial area than the Updated Project (i.e., the Approved Project NIA included a larger number of receptors than the Updated Project shadow flicker assessment).

3.3 Assessment Criteria

There are no federal or provincial guidelines or regulations that specify limits or criteria for assessing shadow flicker effects for wind power facilities in Alberta. In the absence of federal or provincial guidance, the shadow flicker assessment for the Updated Project compared predicted shadow flicker to widely used guidelines, which recommend that exposure to shadow flicker be limited to a maximum of 30 hours per year and a maximum of 30 minutes per day (Koppen et al. 2017; LUNG 2017; Nova Scotia 2021).

3.4 Modelling Methods

Potential shadow flicker effects from the Updated Project were modelled using WindPro® v2.7, a commercial software tool developed and distributed by EMD International A/S. Separate WindPro® models were developed for Assessment Case A and Assessment Case B.

Inputs to the WindPro® models for both assessment cases included the location, hub height, and rotor diameter for the Updated Project wind turbine generators, location of shadow flicker receptors, and terrain elevation contours at 5 m intervals. Additional inputs to the WindPro® model for Assessment Case B included statistical data about monthly sunshine and annual wind direction in the study area.

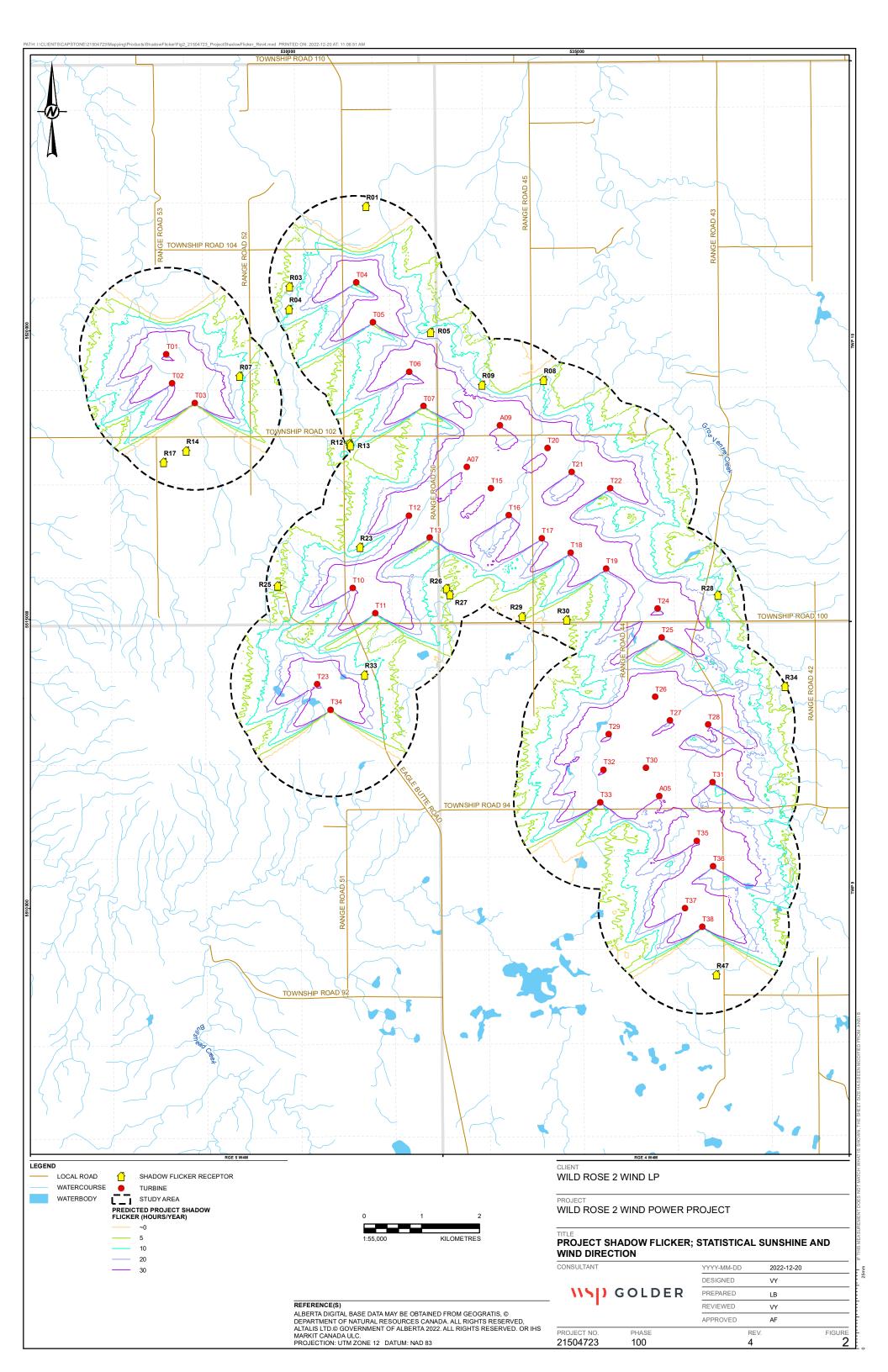
Table 3 presents statistical sunshine data used in the WindPro® model for Assessment Case B. This statistical sunshine data was obtained from a meteorological station located in Suffield, Alberta. Table 4 presents statistical wind direction data used in the WindPro® model for Assessment Case B. This statistical wind direction data was obtained from Project meteorological towers.

Month	Average Daily Sunshine Hours
January	3.34
February	4.39
March	5.56
April	7.26
Мау	8.85
June	9.92
July	10.59
August	9.78
September	6.62
October	5.84
November	4.03
December	2.92

Table 3: Statistical Sunshine Data Used to Model Assessment Case B

Wind Direction	Hours Per Year		
north	379		
north-northeast	313		
east-northeast	377		
east	377		
east-southeast	287		
south-southeast	636		
south	1,065		
south-southwest	1,313		
west-southwest	1,571		
west	1,150		
west-northwest	720		
north-northwest	572		
Total	8,760		

Table 4: Statistical Wind Direction Data Used to Model Assessment Case B


The WindPro® models predicted shadow flicker effects at each of the receptors listed in Table 2 based on the daily and yearly path of the sun through the sky at the Project latitude. In Assessment Case A, the WindPro® model assumed that the sun was always shining, the wind turbine generators were always active, and the turbine rotors were always oriented perpendicular to the line joining the sun and each receptor. In Assessment Case B, the WindPro® model adjusted the predictions to account for statistical monthly sunshine data and to account for turbine orientation based on statistical wind direction data. In both Assessment Case A and Assessment Case B, each receptor was modelled in greenhouse mode (i.e., sensitive to shadow flicker in every direction). Modelling for both Assessment Case A and Assessment Case B considered screening by terrain features (e.g., hills and valleys), but neither assessment case considered screening effects from trees, outbuildings, or other local structures.

4.0 RESULTS

Table 5 presents shadow flicker modelling results for the Updated Project. Shadow flicker results are presented for each of the receptors identified in Table 2. For Assessment Case A, results are presented in the form of total hours of shadow flicker per year, number of days per year with shadow flicker, and maximum minutes of shadow flicker on a single day. For Assessment Case B, results are presented in the form of total hours of shadow flicker per year. Note that daily results are not available for Assessment Case B because the modelling algorithm is based on monthly sunshine statistics and annual wind direction data. Figure 2 presents a contour map of modelling results in the form of total hours of shadow flicker per year for Assessment Case B.

		Assessment Case B		
Receptor Identification Code	Total Hours of Shadow Flicker Per Year	Number of Days Per Year with Shadow Flicker	Maximum Minutes of Shadow Flicker on a Single Day	Total Hours of Shadow Flicker Per Year
R01	0.00	0	0	0.00
R03	21.30	68	30	6.82
R04	24.75	82	29	9.22
R05	47.07	135	39	14.60
R07	41.87	123	39	13.52
R08	36.55	74	34	9.47
R09	40.45	126	32	11.52
R12	14.73	58	24	6.15
R13	21.10	94	23	8.42
R14	0.00	0	0	0.00
R17	0.00	0	0	0.00
R23	25.63	93	25	10.30
R25	14.83	57	26	4.53
R26	19.85	88	26	6.65
R27	22.62	114	25	7.93
R28	37.68	112	31	11.58
R29	7.32	47	14	3.10
R30	7.58	44	17	2.42
R33	75.58	134	43	21.08
R34	7.37	31	22	2.37
R47	0.00	0	0	0.00

Table 5: Shadow Flicker Modelling Results for the Updated Project

5.0 **DISCUSSION**

The results presented in Table 5 indicate that 17 receptors may experience some shadow flicker from the Updated Project.

In Assessment Case A, which assumes the sun is always shining and turbines are always operating with rotors perpendicular to the line joining the sun and receptor points, modelling predicts that six receptors may experience more than 30 hours of shadow flicker per year (R05, R07, R08, R09, R28, and R33) and these same six receptors may experience more than 30 minutes of shadow flicker on a single day. The modelling assumptions used in Assessment Case A are unrealistic and highly conservative (i.e., tending to overestimate potential shadow flicker effects).

Assessment Case B predicts potential shadow flicker effects under more realistic, but still conservative, environmental conditions. Assessment Case B makes use of statistical sunshine data (rather than assuming the sun is always shining) and statistical wind direction data (rather than assuming turbine rotors are always perpendicular to the line joining the sun and receptor points). Assessment Case B is still a conservative treatment of potential shadow flicker effects since it assumes the Updated Project wind turbine generators are always active (i.e., rotor always spinning), assumes that receptors are sensitive to shadow flicker in every direction (i.e., greenhouse mode), and does not account for screening by trees, outbuildings, or other local structures. As indicated in Table 5, modelling for Assessment Case B predicts that no receptor will experience more than 30 hours of shadow flicker per year from the Updated Project.

6.0 CONCLUSION

A shadow flicker assessment was completed for the Updated Project. The shadow flicker assessment evaluated two conservative modelling scenarios: Assessment Case A and Assessment Case B. In accordance with Rule 007, the shadow flicker assessment considered potential effects at 21 occupied dwellings located within 1.5 km of the Updated Project wind turbine generators.

Assessment Case A assumed the sun is always shining during daylight hours (i.e., no cloudy periods), all Updated Project wind turbine generators are always active (i.e., rotors spinning), and all Updated Project wind turbine generators are always oriented with their rotors perpendicular to the line joining the sun and all receptors. Assessment Case B used statistical weather data to estimate the probability of sunshine for each month of the year and to estimate the probability of different wind directions, and hence turbine orientations. Both assessment cases assumed that receptors are sensitive to shadow flicker in every direction (i.e., greenhouse mode) and neither assessment case accounted for screening of shadow flicker by vegetation, outbuildings, or other structures.

In Assessment Case A, modelling predicts that six receptors may experience more than 30 hours of shadow flicker per year (R05, R07, R08, R09, R28, and R33) and these same six receptors may experience more than 30 minutes of shadow flicker on a single day. Review of publicly available satellite imagery shows vegetation and/or outbuildings in close proximity to each of these receptors. The presence of these features will likely reduce potential shadow flicker effects by providing partial line-of-sight screening for Updated Project turbines during those hours of the day when the sun is low enough to create long shadows.

In Assessment Case B, none of the receptors are predicted to experience more than 30 hours of shadow flicker per year. In Assessment Case B, a maximum of 21.08 hours of shadow flicker per year is predicted for

receptor R33. As mentioned above, the amount of shadow flicker actually experienced by receptor R33 will likely be reduced by the presence of vegetation in close proximity to the dwelling.

In conclusion, the present assessment demonstrates there is minimal potential for shadow flicker effects from the Updated Project.

Golder Associates Ltd.

Victor Young, MSc Acoustic Scientist

VY/AF/pls/jr

Andrew Faszer, BSc, PEng Senior Engineer

7.0 **REFERENCES**

- AUC (Alberta Utilities Commission). 2017. NaturEner Wild Rose 2 Energy Inc. Wild Rose 2 Wind Power Project Amendment and Time Extension. Decision 21968-D01-2017. Available from AUC eFiling: <u>https://www2.auc.ab.ca/Proceeding21968/ProceedingDocuments/21968_X[]_Decision21968-D01-</u>2017NaturEnerWildRose2_0085.pdf.
- AUC. 2019. NaturEner Wild Rose 2 Energy Inc. Wild Rose 2 Wind Power Project Time Extension. Decision 24912-D01-2019. Available from AUC eFiling: https://www2.auc.ab.ca/Proceeding24912/ProceedingDocuments/24912_X[]_Decision24912-D01-2019-NaturEnerWildRose_0007.pdf.
- AUC. 2020. NaturEner Wild Rose 2 Energy Inc. Wild Rose 2 Wind Power Project Time Extension. Decision 26021-D01-2020. Available from AUC eFiling: <u>https://www2.auc.ab.ca/Proceeding26021/ProceedingDocuments/26021_X[]_Decision%2026021-D01-</u> 2020%20-%20Wild%20Rose%202%20Wind%20Power%20Project%20Time%20Extension_000009.pdf.
- AUC. 2022. Rule 007: Applications for Power Plants, Substations, Transmission Lines, Industrial System Designations, Hydro Developments and Gas Utility Pipelines.
- DNV-GL (GL Garrad Hassan Canada Inc.). 2016. Wild Rose 2 Wind Power Plant Noise Impact Assessment. Prepared for NaturEner Wild Rose 2 Energy Inc. AUC Proceeding No. 21968; Exhibit No. X0055. Available from AUC eFiling: <u>https://www2.auc.ab.ca/Proceeding21968/ProceedingDocuments/Attachment_A_WR2_NIA-Issue-D_0055.PDF.</u>
- Koppen, E., Gunuru, M., and Chester, A. 2017. *International Legislation and Regulations for Wind Turbine Shadow Flicker Impact.* 7th International Conference on Wind Turbine Noise, Rotterdam, May 2017.
- LUNG (Das Landesamt für Umwelt, Naturschutz und Geologie [Land Office for Environment, Nature Conservation and Geology]). 2017. *Hinweise zur Ermittlung und Beurteilung der optischen Immissionen von Windenergianlagen [Instructions for the Determination and Assessment of the Optical Emissions of Wind Turbine Installations]*. Website: https://www.lung.mv-regierung.de/dateien/wea_schattenwurf_hinweise.pdf. Accessed September 18, 2017.
- Nova Scotia (Nova Scotia Policy Division Environmental Assessment Branch). 2021. Guide to Preparing an EA Registration Document for Wind Power Projects in Nova Scotia. Website: <u>EA.Guide-Proponents-</u> <u>WindPowerProjects.pdf (novascotia.ca).</u>

SOLDER

golder.com